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CONTOUR INVARIANTS IN THE THEORY Of FRACTURE OF THERHOELASTIC BODIES* 

V.N. NIKOLAEVSICII 

Conditions of crack growth in a medium described by the equations of coupled thermo- 
elasticity are studied. Two integrals are written for the contour enclosing the 
stationary field near the crack tip. The first of these integrals corresponds to 
the free energy balance and includes the mechanical work. In the limiting cases of 
the rapid and slow (in thermal sense) cracks it becomes the known J-invariant from 
which thermal fluxes are excluded. The second integral is formulated as the entropy 
(heat) flux balance. 

The Gibbs thermodynamic relation for a disintegrating body and expression for free energy 
/l/ together yield the relation connecting the variations in independent parameters I, T and 

A (I is the crack length, T is body temperature and A is the displacement caused by the ex- 
ternal load PI. We can also obtain the expressions for the thermodynamic forces 

*, 
P=T, Cd&A(T). S+21&-_ 

given in terms of the free energy Cp, of the body with a crack. Here S is the total entropy 
of the body and y(T) is the effective surface energy. The crack in the body grows, if the 
Irwin force G reaches a critical value depending on the temperature. Such an analysis how- 
ever is insufficient in a typical situation of nonuniform distribution of the temperature 
throughout the body. 

1. Me considerthequasi-equilibrium processes in a thermoelastic body described by the 
energy balance and the mechanical equilibrium equations 

aE aeij a4j 
xGoijat-alj , 3+0; eij=+ i 

aui au. 
-K+ti 

J ,J 
Here e is the specific internal energy, cij are the stresses, eij the deformations and qj 

denote the heat fluxes. If the crack in the body grows at the rate lk' (plane problem) then 
introduction of the associated moving coordinate system y, = zk- lk't is expedient. Then, in- 

tegration of the first equation of (1.1) over the area SW bounded by two consecutive con- 
tours ra, r,~ about the crack tip leads, in the absence of the mass, impulse and energy flows 
across its edge, lead to the equation 

S xjnjdI'= S xjnjt~, 
r% ra 

xj=el,.6~j--<j~I,.-qj 

provided #at the fields of the variables in question are stationary within SB_~. The integ- 
rals (1.2) are invariants, and this means that the total energy fluxes through any contour r,~ 

are equal to each other. If no energy enters the body through the crack tip and the fracture 

point is referred to the body, then the following condition holds for any contour r, 12/: 

S %jtZjdr=O 

‘0 

Let us now consider the difference /2/ between the energy of a particle lying inside the 
bo$l (e = e,,) and a particle on the fracture surface (e = es). We have 

S X,nj dr = S 1,’ (E# -E)6~jnjdr=2y~(Tg) lk’ 

r% r% 
(1.3) 

Indeed, the particles with energy s8 form a thin layer (-a< yl < a) along the crack edge, 
and the right'-hand side of the balance (1.3) is transformed as fOllOWS: 
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(1.4) 

Here yE (T) denotes the excess energy corresponding to the point of intersection of the con- 

tour rb with the crack surf ace. When Tg# T=, the contour integral (1.4) is reduced not to 

a constant, but to a function of Tp along the crack. 

2. To analyze the characteristic temperature field we use the heat flux equation, i.e. 
the entropy balance s representing a function which can only grow locally 

(2.1) 

Here hj denotes the flux, and 
the equation (2.1) simplifies 

II the work done by entropy. In the steady moving region Sg.cr 

to 
as 

lke6kj"'j (2.21 

and its integration over Sb, yields an equation which shows that the integral over the con- 
tour r, is not, in general, an invariant quantity for the entropy fluxes. It is only when 

S rrdS=O (2.3) 
"w 

that the above equation reduces to condition of invariance 

5 (1~6kp-hj)~~jdI =- 1 II dS=-*2P*(T3 

ra sa 

(2.4) 

(the value of the constant is obtained from the entropy balance for the region S, within the 
contour re which includes the fracture point). Here we asslDne that the entropy increases near 
the crack tip, the instance caused by dissipation of energy on irreversible deformations (the 
body is nearly elastic /2/j. Introduction of the effective surface energy y*(T,) implies that 
the plastic Irwin-Orowan particle is autoncmous at the crack tip. The quantity Ta denotes 
thetemperature averaged over the area. If condition (2.3) does not hold, then the contour 
integrals must be formulated for the velocity fields and for amounts of work done /3/. Let 
us further take into account the difference in entropy of the particles within the body and at 
its surface. Then we have 

J t1i6kjsv - hj) nj dr = 1,‘6kj (Se- S) nj dr - $2)‘* (TJ e 

B 

2y8(Tg)+2y,(T&; -$=a[s(Ta)l; 

[s(T)l=sm(T)--s,(T). 

3. Following /4/, we make use of the transformation 

e, - T,s, = f, - (T, - T) s,, df, = ai&, - sdT 

and write the free energy f,, = E,- Ts, in the form of a series 

where the last term is taken at T,=T-@,EJ=T-T~,O<&<~. Since 

equation (3.1) becomes 

Next we multiply 
and subtractthe result 
ohtain 

e, - Tos, = f. (To, eij) - G$- 8’ (3.2) 

the balance of the entropy fluxes (2.5) by the reference temperat=S To 

from the energy balance (1.3). Further, using the relation (3.21, we 

afv f, (To, eij) = f,(T*eu)- e-a~_ -I- +Y (Z), 

(2.5) 

(3.1) 
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In the isothermal case (2' = TO) the integral (3.3) transforms directly into the known 
variant /1,5/ which does not contain the heat fluxes Q. The Ericksen representation 
can be used to transform the right-hand side of (3.3) 

me - -$ rs(Ta) =a(fe] -TO [sl) =atf(Tofl - 

Here y. denotes the Griffith surface energy which is a function of the temperature I', 
surface layer, determined by two material constants, yf (!I!',) and b = a[c,*liT,. 

J-in- 
(3.2: 

(3.4) 

of tne 

4. In the linear approximation the free energy f,, entropy 8, and rheological couplings 
in the thermoelastic body /6/ have the form 

f, (T, eij) = ‘/a (hei:ejj + 2peijeij) - 3KqBe --&$=f,(TO+ei~) -3K@-J$-$-, s,,=3Kqe+ c,-&-, (4.1! 

where 5, CL are the Lamlk coefficients, r( is the thermoelastic expansion coefficient and k = xc, 
is the heat conductivity coefficient. In this case the integral (3.3! for the free energy as- 
sumes a simpler form 

The contour integral (4.2) replaces the relations which were used in the actual computations 
/7/ and included a surface integral over Sk (e.g. of the product of volume deformation and 
the temperature gradient /a/>. The second contour integral (for the entropy) is necessary for 
determining which part of mechanical work expended on fracture is converted into heat. Let 0 
be the effective amount of heat generated when the length of the crack is increased by one 
unit of measurement. Then 

\ jC8(61j + + +) - JKqTo&j] t>j dlJ + Q = 0 (4.3) 

r, 

Q 'ZY, (0,) -2Ys@M 

The problem of a crack in a thermoelastic body was solved in 161 usung the method of asymptotic 
expansion, and it was assumed that all mechanical work done on fracture G is converted into 

heat. The quantity G was found as the value of the J-integral /1.5/ after substituting into 

it the free energy f,,(T,er~) at T # T, 
Let us consider in this connection the conditions of existence of the J-integral which 

does not contain the heat fluxes and is therefore invariant with respect to the rate of crack 
growth. The very first conditions are those of adiabaticity within the countour rs, i.e. 

$$++.<I? $-"+& 

which hold for the "rapid" (in the thermal sense) cracks. Here L is the linear dimension of 

the region Se=. In this case the integral (4.3) assumes the form 

1 To.& pj dP + Q = 0 (4.4) 

r5 

and the following transformations can be carried out in the integrand of (4.2): 
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f, (To, eij) - +$ - u.. 3 nj = f, ( T, eg) + Ts, - 
” am1 

a+ au, 
TOS, - o+j yq~- n, = u, - TOG - aij ay1 nj 

dU, = Oi,deij, deij= deij’, qj = 0 

Therefore the integral (4.2) definitely transforms into the known J-invariant 

J-c: 
I( 

uvfh~ - oil 2) nj dr = 2yqv yq = ~a (Td + Y* (TcI) (4.5) 

B 

Conversely, for the "slow" cracks we have the estimate 

-&+ I I 
--++A ++=e, +fr s3KqTc.e 

and this enables us to reduce the integral (4.3) to the form 

s 
+,dr 

rB ' 

+$=0 (4.6) 

which corresponds only to the conduction heat fluxes from a point heat source moving with the 
crack tip. In this isothermal situation of the crack growth the integral (4.2) assumes the 

fm (TO, eid bj - oij au* 
all, I nj dr = ~YT, YT= YO (To) + Y* (TO) (4.7) 

As was expected, the work done on fracture in the adiabatic and isothermal case is, generally 
speaking, different in each case (yq#vT). 
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